Unlocking potential that leads innovation

INDUSTRY UPDATE NZGW 2016

AGGAT, a HERA program: Now and beyond

Boaz Habib AGGAT Programme Manager November 2016

Heavy Engineering Research Association

- Industry owned and governed
- 600+ NZ wide membership
- Not-for profit organisation
- Established in 1978
- Structural, Welding, Industry Development Divisions
- Metal based industries but also... LG, SS, light alloys, metal based composites
- Industry elected executive

Welding Centre

Our value proposition

AG,GAT

Our research framework

AG₄GAT

Our program

IS1-1 Expert Design Tool IS1-2 Materials Knowledge Base IS1-3 Scaling Mechanisms IS1-4 Heat Transfer Data IS1-5 Expander Research IS1-6 Control Research

IS2-1 Systems and Modules IS2-2 Heat Exchanger Concepts IS2-3 Turbo Machinery Development IS2-4 Control Systems Development

Our research and industry Leaders

Our research theme leaders

Technology Concepts Boaz Habib

Control Systems Brent Young

Materials and Fluids Michail Karpenko

Materials and Fluids Sadiq Zarrouk

Heat Exchangers Mohammed Farid

Turbines Lei Chen

Our key deliverables

AG,GAT

EDT

The flowchart for highly finned tube co-current evaporator

EDT

AG,GAT

Key Financial Data

Simple ORC

Enter data into the text fields. Components can be selected by cloking on a component on the process diagram. When ready, click "Generate simple report" to continue.

Please select the heat source	Please select the cooling me
Exhaust gas •	Ar
Inlet temperature of the heat source, °C	iniet temperature of cooling r
400.0	20.0
Flow rate of the heat source, kg/s	Pressure of cooling medium,
2.0	1.0
Pressure of the heat source, Bar	Please select a working fluid
1.0 /	R 245ta

Ar	
Iniet temperature of cooling medium	,°C
20.0	
Pressure of cooling medium, Bar	
1.0	
Please select a working fluid	
R 245ta	

lease specify the assumptions	for the simul	ation
urbine efficiency (%)	85	1
imp efficiency (%)	85	1
at exchanger efficiency (%)	85	1
ich temperature (°C)	5	1
per heat temperature (°C)	3	

Generate simple report

ley Financial Data	/ Financial Data			
Output power (KW):	62. i	Office outer radie (%)	10.0	
Plant metrie (rear):	20	nemial electricity price excendios (%)	3.0	
Blee tholey price (NZD/KW).	0.053	mittar are outria int prozzi novj.	120.2	
Operating and maintanance cest (N2D/K	V): 0.013	Net PresentValue (NZD (KW):	265.1	
specific cost per net power output (120)	kWt 2000	internal Rate of Roturn (%):	32.3	

Preliminary Equipment Des

Geothermal ORC pilot plant

- Built at workshop
- Cooling system installation
- Torque measurement
- Busy times for industry!

AG_AGAT

AGGAT Test Rig

- Above Ground systems and equipment testing capability
- Heat exchanger innovations
- AGGAT Turbine
- Basic control logic
- Thermodynamic limitations

Turbo-generator research

Our research work -turbine design system

AG_AGAT

Turbo-generator partnerships

AG,GAT

Our research work – turbine performance

3D numerical simulation results of turbine performance

Power (kW)	Efficiency	Pressure ratio	Rotational speed (rpm)
103	0.86	5.1	29000

Our research plan

Heat transfer research

Our design optimisation and innovation

Collaborating and leveraging our expertise in thermal analysis and modelling to validate, design and optimise.

Delivering:

•

•

- A viable way for our members technology to run by detecting and solving errors that originally caused failure.
- Optimum operating conditions with areas of risk failure highlighted.
- Member confidence through increased levels of understanding in the design optimisation process

Our goal

*Innovative concepts in heat exchanger design (evaporator & condenser) currently under study

Control systems research @ UoA

Materials and fluids research

What materials perform best?

Overall objectives

Identification & characterisation for components within an ORC plant

- Standards and novel materials
- Surface modifications

Built up industry capability for the research and consulting services • Manufacture and deliver equipment and samples required

Shell & tube rig

Double pipe complex rig

- Three DP units
- Individually adjustable flow rates (CW, SGW)
- and scale mitigation technologies
- Ability to test anti scaling

Corrosion rig

Materials test rig design

Based on 20ft flat rack container 50 m of piping, 28 valves, 40 flange pairs

Materials test rig

- Awaiting final connections to mainline and discharge end
- Building experimental programme via partnerships and collaboration
- Inauguration planned for January 2017

Our achievements to date

2016	Expert Design Tool	ORC Pilot Plants
	Models	Design Cost
	Algorithms Presentation	Installation Commissioning
		International partnerships Company Investments
		Research value to stakeholders

Our achievements to date

Beyond

AG,GAT

EDT EDAT

- Include analysis component in EDT
- Greater sophistication in ORC modelling

ORC

- Application sites biomass, hybrid source
- Cycle super-critical
- Scale above 100-250kW
- 2nd generation ORC Plant
- Growth in Allied Technologies space

Paper nos.

- 1. Abbas et al., no. 30
- 2. Heinzel et al., no. 124
- 3. Chen et al., no. 25
- 4. Dong et al., no. 147
- 5. Jamero et al., no. 26
- 6. Dacillo et al., no. 27
- 7. Lie et al., no. 148
- 8. Habib et al., Industry update

Acknowledgements

- Ministry of Business, Innovation and Employment
- ✓ AGGAT research team
- University of Auckland
- ✓ Industry partners
- ✓ Callaghan Innovation

