



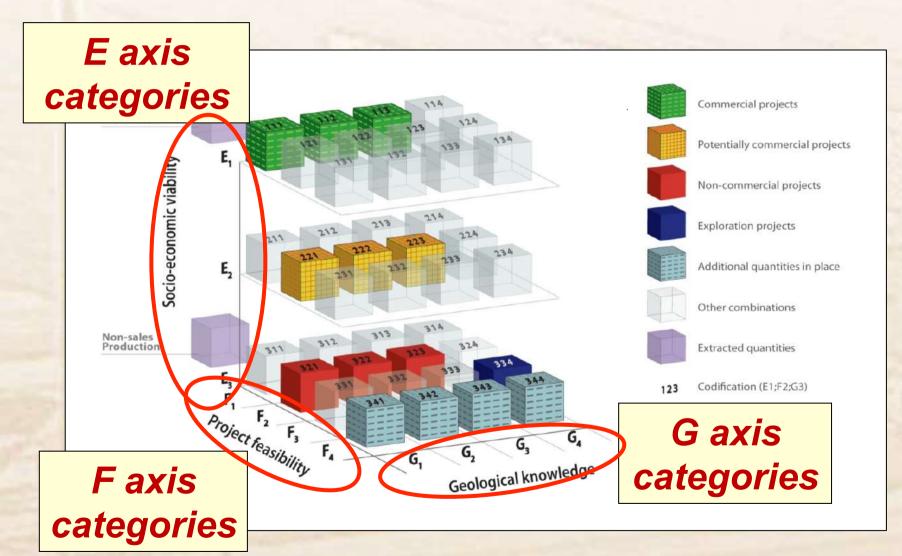
# Application of UNFC-2009 to Geothermal Energy Resources

Presented by **Ussher & Grant** on behalf of the Task Force on the Application of the UNFC-2009 to Renewable Energy and the IGA Resources and Reserves Committee



### **UNECE** What is UNFC-2009?

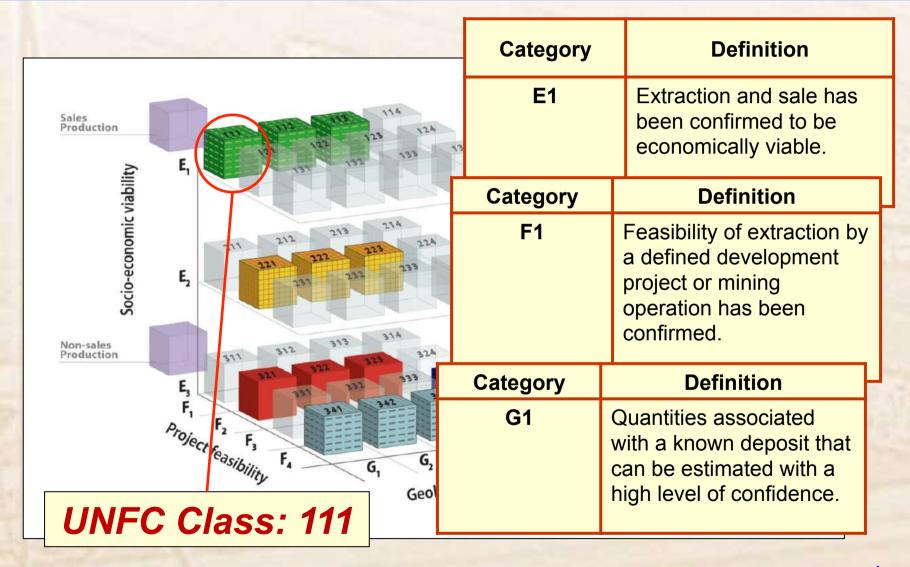



### "United Nations Framework Classification for Fossil Energy and Mineral Reserves and Resources"

- Generic, principles-based classification system
  - Now applicable to solid minerals, fossil energy, renewables (geothermal energy) and injection projects
- Based on three criteria
  - 'E axis' (degree of favorability of social and economic conditions for establishing commercial viability of project)
  - 'F axis' (maturity of studies and commitments necessary to implement project)
  - G axis' (level of confidence in the estimate of potentially recoverable quantities)



### **UNECE** What is UNFC-2009?








### **UNECE** What is UNFC-2009?







# Alignment of systems (schematic)

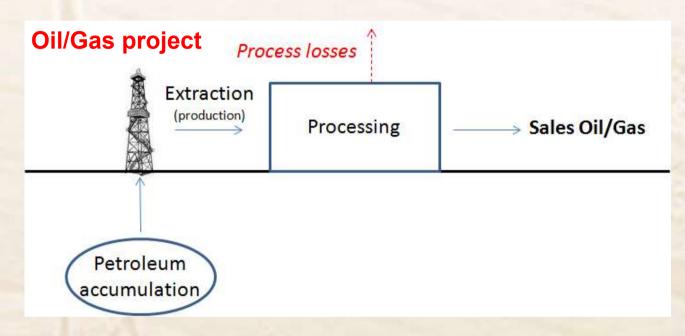


### **UNFC-2009**

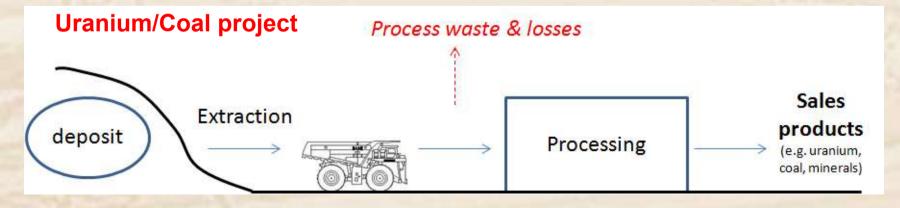
### **PRMS**

### **CRIRSCO**

|                                    | Sales Production                   |
|------------------------------------|------------------------------------|
|                                    | Non-sales Production               |
| Total commodity initially in place | <u>Class</u>                       |
|                                    | Commercial<br>Projects             |
|                                    | Potentially Commercial<br>Projects |
|                                    | Non-Commercial<br>Projects         |
|                                    | Additional quantities in place     |
|                                    | Exploration<br>Projects            |
|                                    | Additional quantities in place     |


| Production            |  |
|-----------------------|--|
| <u>Class</u>          |  |
| Reserves              |  |
| Contingent Resources  |  |
| Unrecoverable         |  |
| Prospective Resources |  |
| Unrecoverable         |  |

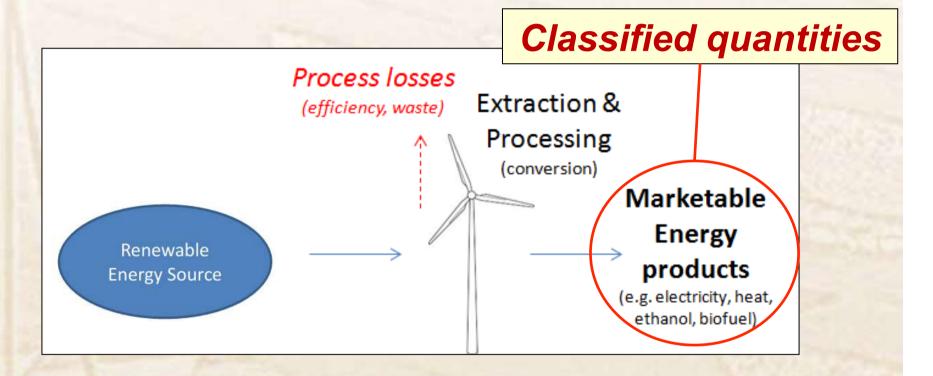
| Extracted              | 100000 Bed |
|------------------------|------------|
| <u>Class</u>           |            |
| Mineral Reserves       |            |
| Mineral Resources      |            |
| Not reported           | ļ          |
| Not reported           |            |
| Exploration<br>Results |            |
| Not reported           |            |




# **UNECE** 'Project-Based' System






A **Project** is the level at which a decision is made on whether or not to proceed (i.e. spend money or not.)





# **UNECE** UNFC for 'Renewables'





A **Project** is the link between the Renewable Energy Source and marketable quantities of Energy Products. A **Project** provides the basis for economic evaluation and decision-making.



# Known vs Potential



- Known versus Potential Geothermal Energy Sources
  - Critical distinction between Drilled (and tested to be productive)
    - [G1, G2, G3]
  - Or NOT
    - [G4 or G4.1, G4.2, G4.3]
- Probability of Discovery
  - For Potential Geothermal Energy Sources reported using the 'G' category G4 or its sub-categories G4.1, G4.2 and G4.3, the Probability of Discovery should also be reported.
  - This probability is the chance that further exploration, drilling and well testing will result in the confirmation of a Known Geothermal Energy Source.
    - temperature, permeability and fluid chemistry or other relevant parameters that are important for the type of energy extraction planned.
  - The quantities reported in the 'G' category G4 or its sub-categories G4.1, G4.2 and G4.3 are 'un-risked'
    - they are the quantities that may be expected to be reported for the project once Known, regardless of the level of Probability of Discovery



### **UNECE-IGA MoU**



- The IGA and the UNECE signed an MoU on 19 Sept 2014 to develop a globally applicable harmonized standard for reporting Geothermal Energy Resources.
  - http://www.unece.org/fileadmin/DAM/oes/MOU/2014/MoU-UNECE IGA.pdf
- The IGA appointed a voluntary Working Group on 15 Jan 2015 to draft 'Geothermal Specifications' for the UNFC.
- Subsequent 20-month period of teleconferences, drafting, workshops, presentations, white papers, expert reviews, public comments and refinement of the documents.
- The UNECE Committee on Sustainable Energy endorsed the Geothermal Specifications on 30 Sept 2016.



# **Working Group**

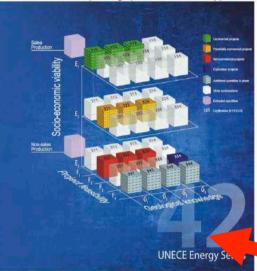


|                                | Country of  |                                                 |
|--------------------------------|-------------|-------------------------------------------------|
| Name                           | residence   | Affiliation                                     |
| Gioia Falcone                  | Germany     | (*)TU Claustal (representing UNECE and IGA R&R) |
| Miklos Antics                  | France      | GPC IP/Geofluid (endorsed by EGEC)              |
| Roy Baria                      | UK          | Mil-Tech UK Ltd.                                |
| Larry Bayrante                 | Philippines | Energy Development Corporation                  |
| Pa <mark>olo Cont</mark> i     | Italy       | University of Pisa (endorsed by UGI)            |
| Ma <mark>lcolm</mark> Grant    | New Zealand | MAGAK (endorsed by NZGA)                        |
| Robert Hogarth                 | Australia   | Hogarth Energy Resources                        |
| Egi <mark>l</mark> l Juliusson | Iceland     | Landsvirkjun                                    |
| Harmen F. Mijnlieff            | Netherlands | TNO (endorsed by Dutch Geothermal Platform)     |
| Annamaria Nádor                | Hungary     | Geological and Geophysical Institute of Hungary |
| Greg Ussher                    | New Zealand | Jacobs                                          |
| Kate Young                     | USA         | National Renewable Energy Laboratory            |

<sup>(\*)</sup> Now at Cranfield University, UK

Observers: Graeme Beardsmore, Chair, IGA R&RC

Horst Rüter, Director, IGA Service GmbH




# **UNECE** UNFC-2009 Hierarchy





#### United Nations Framework Classification for Fossil Energy and Mineral Reserves and Resources 2009 incorporating Specifications for its Application







#### Specifications

for the application

of the United Nations Framework Classification for Fossil Energy and Mineral Reserves and Resources 2009

to Renewable Energy Resources

Done in Geneva, 30 September 2016





#### **Specifications**

for the application of the

United Nations Framework Classification for Fossil Energy and Mineral Reserves and Resources 2009 (UNFC-2009)

to

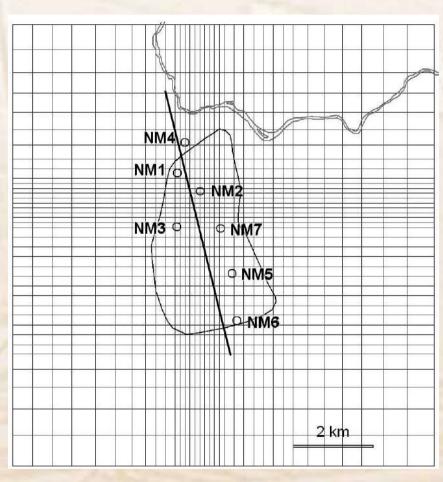
**Geothermal Energy Resources** 

Done in Geneva on 30 September 2016

Geothermal Specifications <u>linked to</u> Renewable Specifications <u>and</u> Generic Specifications



### Look-ahead




- On 30 Sept 2016, the Sustainable Energy Committee requested the UNECE Expert Group on Resource Classification (EGRC) to consider changing the name of UNFC-2009 to reflect that it is for energy and mineral resources and not just for fossil energy.
- The UNFC revision process has just started, which will include renaming the system. The intent is for the EGRC to issue revised system end-2018/early-2019.



# Example Ngatamariki





Ngatamariki as at 2011, using only public information.

- 7 wells drilled
- 4 productive plus one permeable but not flowed
- Reservoir temperature up to ~280C
- Reservoir area around 5 km<sup>2</sup>
- Simulation based on known data



# **Example**



## Ngatamariki

- Classification based on consent
  - Project defined in application
  - 82 MW power plant, binary, 100% reinjection
  - Feasibility assessed at level to justify securing resource consent
- Product
  - Electricity
- Reference Point
  - Switchyard



# **Example**



# Ngatamariki E category classification and subclassification

| Category     | UNFC-2009 Definition                                                                                                            | Reasoning for classification                                                                       |
|--------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| E1           | Extraction and sale has been confirmed to be economically viable                                                                | Well testing and simulation has shown sustained discharge is possible and flow rates are economic. |
| Sub-category | UNFC-2009 Definition                                                                                                            | The project has resource consents and final financial approval in 2011.                            |
| E1.1         | Extraction and sale is economic on the basis of current market conditions and realistic assumptions of future market conditions |                                                                                                    |

Extraction and sale is not expected to become economically viable in the foreseeable future or evaluation is at too early a stage to determine economic viability.

The simulation showed production could be sustained for 50 years. However, the proposed development is for 35 years only. The extra 15-year period would be a separate project and would fall here.





# Ngatamariki F category classification and subclassification

| Category     | UNFC-2009 Definition                                                                                                                                              | Reasoning for classification                                                  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| F1           | Feasibility of extraction by a defined development project or mining operation has been confirmed                                                                 | Exploration, well testing, simulation and development plans are all complete. |
| Sub-category | UNFC-2009 Definition                                                                                                                                              |                                                                               |
| F1.3         | Sufficiently detailed studies have been completed to demonstrate the feasibility of extraction by implementing a defined development project or mining operation. |                                                                               |





# Ngatamariki G category classification and subclassification

| Category | UNFC-2009 Definition                                                                                  | Reasoning for classification                                                                                                                                                                                                              |
|----------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| G1*      | Quantities associated with a known deposit that can be estimated with a high level of confidence.     | The combination of the power density method and the simulation give high confidence on the estimate.                                                                                                                                      |
| G2*      | Quantities associated with a known deposit that can be estimated with a moderate level of confidence. | Wells have been tested and a simulation completed based upon natural state and interference information. There is no production history and consequently no match to that history. Because of the lack of history confidence is moderate. |

<sup>\*</sup> Note that the classification as G1 and G2 was based on an evaluation of public domain information only and a final classification, including the provision of a G3 estimate, would be required to provide an indication of the full range of uncertainty in the estimate.



# **Example**



- Ngatamariki
  - Energy Assessment
    - Numerical Model shows 82 MW for 35 years (Deterministic)
    - Areal method indicates 86 MW for 30 years or 82 for 31.5 (Gives P90)
  - Geothermal Resources:

Low estimate: 80 PJ

Best estimate: 89 PJ





## Ngatamariki

### **UNFC-2009 Geothermal Energy Resources**

| Classification | Energy Quantity                             | Supplemental information                                                                        |
|----------------|---------------------------------------------|-------------------------------------------------------------------------------------------------|
| UNFC Class     | Use energy units                            |                                                                                                 |
| E1.1;F1.3;G1   | 80PJ*(2500 <sup>#</sup> MW <sub>e</sub> yr) | 82 MW <sub>e</sub> for 31.5 years;                                                              |
| E1.1;F1.3;G2   | 9PJ*(300* MW <sub>e</sub> yr)               | 82 MW <sub>e</sub> for 3.5 years; incremental to G1, with G1+G2 representing the best estimate. |