

Why Geoheat?

- A local and abundant source of renewable thermal energy
- There's no more efficient heat than heat (pers. comm. Anya Seward)
- Heating is half of global energy consumption and 38% of CO₂ emissions in 2022 (IEA)
- Geoheat readily replaces fossil fuel boilers
 - Refer the EECA RETA BOP report for a green house and hospital in Whakatane
- Low electrical energy use when coupled with a heat pump
- Simple paybacks for ambient heat pump systems from months to a few years

On the TRL scale it is 9/9 Proven systems in Operation

Buckingham Castle, England

Riverstone Castle, Oamaru

Sydney Opera House

Beyond the Bay of Plenty

- The Bay of Plenty and Waikato regions have ready access to **ALL TYPES** of geothermal
 - Ambient, Low and High Temperature
- Recall direct and indirect use of geoheat?
- If no geothermal influence... use ambient temperatures with a geothermal / ground source heat pump
- Ambient temperature with heat pumps can:
 - Also cool; and
 - Use the Ground for thermal storage (Samantha Alcaraz will talk to this).

A Vision for Low Temperature Geoheat in Aotearoa NZ

- The energy transition considers technology solutions that:
 - Prioritise efficiency and demand management
 - Are optimised on a site specific basis;
 - Substantially reduce carbon emissions
 - Consider the full thermal energy system (eg heating, cooling, hot water, pools etc); and
 - Consider integration with the electrical energy system (eg annual usage, peak loads, more renewables).
- Potential exists to:
 - Remove all fossil fuel boilers;
 - Reduce grid upgrade requirements of BAU electrification; and
 - Integrate heating and cooling.

A Vision for Low Temperature Geoheat in Aotearoa NZ

A geothermal balance to energy supply and demand

Yale Carden
GeoExchange NZ Limited
ycarden@geoexchange.nz

Conventional Geothermal Potential New Zealand

- Definition electricity generation using binary and flash plant technology.
- Generally, reservoirs over 120°C.
- Where is it now
- Existing power stations on the fields marked with
- So where is the potential?
 - Brownfields expanding existing operations.
 - Greenfields completely new fields.

Field	Existing plants	Installed net capacity (MWe)
Wairakei	Wairakei A&B	120
	Wairakei binary	14
	Te Mihi	166
	Poihipi	53
Ohaaki	Ohaaki	41
Tauhara	Te Huka U1&2	27
	Tauhara	174
Rotokawa	Rotokawa	34
	Nga Awa Purua	138
Mokai	Mokai	111
Nga Tamariki	Nga Tamariki U1-4	82
Kawerau	KGL	100
	TOPP1	24
	TAOM	26
	GDL	9
Ngawha	Ngawha U1-3	25
	Ngawha U4	32

- Expansions (brownfields)
- Consented, and either under construction or planned
- +169 MWe

Field	Expansions	Planned capacity (MWe)
Tauhara	Te Huka U3	51
Nga Tamariki	Nga Tamariki U5	37
Kawerau	TOPP2	49
Ngawha	Ngawha U5	32
TOTAL		169

- Other potential future expansions, from Lawless et al., 2020:
- +225 MWe

Field	Estimated capacity (MWe)
Mokai	25
Rotokawa	100
Tauhara	50
Ngawha	50
TOTAL	225

Katie Mclean - NZGA President

- Exploration greenfields
- Could be any of the untouched red (development) or orange (conditional development) fields. Even potentially light green (research).
- Estimates of MWe of undeveloped fields are uncertain and there is no consensus.
- Potential in the BOP (Lawless et al., 2020) ~200 MWe:
 - Taheke 75 MWe
 - Tikitere 100 MWe
 - Rotoma 25 MWe
- Potential in Waikato (Ussher et al., 2023) ~240 MWe:
 - Tokaanu 120 MWe
 - Mangakino 15 MWe
 - Atiamuri 15 MWe
 - Horohoro 23 MWe
 - Reporoa 66 MWe but might be connected to Waiotapu which is protected.

